
34 COMMUNICATIONS OF THE ACM | OCTOBER 2016 | VOL. 59 | NO. 10

practice

G OOGLE’S CHROME WEB browser strives to deliver a
smooth user experience. An animation will update the
screen at 60FPS (frames per second), giving Chrome
approximately 16.6 milliseconds to perform the
update. Within these 16.6ms, all input events have to
be processed, all animations have to be performed, and
finally the frame has to be rendered. A missed deadline
will result in dropped frames. These are visible to the
user and degrade the user experience. Such sporadic
animation artifacts are referred to here as jank.3

JavaScript, the lingua franca of the Web, is typically
used to animate Web pages. It is a garbage-collected
programming language where the application
developer does not have to worry about memory
management. The garbage collector interrupts the

application to pass over the memory
allocated by the application, deter-
mine live memory, free dead memory,
and compact memory by moving ob-
jects closer together. While some of
these garbage-collection phases can
be performed in parallel or concur-
rently to the application, others can-
not, and as a result they may cause
application pauses at unpredictable
times. Such pauses may result in user-
visible jank or dropped frames; there-
fore, we go to great lengths to avoid
such pauses when animating Web
pages in Chrome.

This article describes an approach
implemented in the JavaScript engine
V8 used by Chrome to schedule gar-
bage-collection pauses during times
when Chrome is idle.1 This approach
can reduce user-visible jank on real-
world Web pages and results in fewer
dropped frames.

Garbage Collection in V8
Garbage-collector implementations
typically optimize for the weak gen-
erational hypothesis,6 which states that
most of the allocated objects in appli-
cations die young. If the hypothesis
holds, garbage collection is efficient
and pause times are low. If it does not
hold, pause times may lengthen.

V8 uses a generational garbage col-
lector, with the JavaScript heap split
into a small young generation for newly
allocated objects and a large old gen-
eration for long-living objects. Since
most objects typically die young, this
generational strategy enables the gar-
bage collector to perform regular, short
garbage collections in the small young
generation, without having to trace ob-
jects in the large old generation.

The young generation uses a semi-
space allocation strategy, where new
objects are initially allocated in the
young generation’s active semi-space.
Once a semi-space becomes full, a
scavenge operation will trace through
the live objects and move them to the
other semi-space.

Such a semi-space scavenge is a
minor garbage collection. Objects that

Idle-Time
Garbage-
Collection
Scheduling

DOI:10.1145/2948991

 Article development led by
 queue.acm.org

Taking advantage of idleness to reduce
dropped frames and memory consumption.

BY ULAN DEGENBAEV, JOCHEN EISINGER,
MANFRED ERNST, ROSS MCILROY, AND HANNES PAYER

http://dx.doi.org/10.1145/2948991

OCTOBER 2016 | VOL. 59 | NO. 10 | COMMUNICATIONS OF THE ACM 35

I
M

A
G

E
 B

Y
 I

W
O

N
A

 U
S

A
K

I
E

W
I

C
Z

/A
N

D
R

I
J

 B
O

R
Y

S
 A

S
S

O
C

I
A

T
E

S
,

U
S

I
N

G
 I

C
O

N
 ©

 G
O

O
G

L
E

/T
H

E
 C

H
R

O
M

I
U

M
 P

R
O

J
E

C
T

S

have already been moved in the young
generation are promoted to the old
generation. After the live objects have
been moved, the new semi-space be-
comes active and any remaining dead
objects in the old semi-space are dis-
carded without iterating over them.

The duration of a minor garbage
collection therefore depends on the
size of the live objects in the young
generation. A minor garbage collec-
tion is typically fast, taking no longer
than one millisecond when most of
the objects become unreachable in
the young generation. If most objects
survive, however, the duration of a mi-
nor garbage collection may be signifi-
cantly longer.

A major garbage collection of the
whole heap is performed when the size
of live objects in the old generation
grows beyond a heuristically derived
memory limit of allocated objects. The
old generation uses a mark-and-sweep
collector with compaction. Marking
work depends on the number of live
objects that have to be marked, with
marking of the whole heap potentially
taking more than 100ms for large Web
pages with many live objects.

To avoid such long pauses, V8
marks live objects incrementally in
many small steps, pausing only the
main thread during these marking
steps. When incremental marking is
completed the main thread is paused
to finalize this major collection. First,
free memory is made available for the
application again by sweeping the
whole old-generation memory, which
is performed concurrently by dedi-
cated sweeper threads. Afterward, the
young generation is evacuated, since
we mark through the young generation
and have liveness information. Then
memory compaction is performed to
reduce memory fragmentation in old-
generation pages. Young-generation
evacuation and old-generation com-
paction are performed by parallel com-
paction threads. After that, the object
pointers to moved objects in the re-
membered sets are updated in paral-
lel. All these finalization tasks occur in

36 COMMUNICATIONS OF THE ACM | OCTOBER 2016 | VOL. 59 | NO. 10

practice

a single atomic pause that can easily
take several milliseconds.

The Two Deadly Sins of
Garbage Collection
The garbage-collection phases out-
lined here can occur at unpredictable
times, potentially leading to applica-
tion pauses that impact the user experi-
ence. Hence, developers often become
creative in attempting to sidestep these
interruptions if the performance of
their application suffers. Here, we look
at two controversial approaches that
are often proposed and outline their
potential problems. These are the two
deadly sins of garbage collection.

Sin One: Turning off the garbage
collector. Developers often ask for
an API to turn off the garbage collec-
tor during a time-critical application
phase where a garbage-collection
pause could result in missed frames.
Using such an API, however, compli-
cates application logic and leads to it
becoming more difficult to maintain.
Forgetting to turn on the garbage col-
lector on a single branch in the pro-

gram may result in out-of-memory
errors. Furthermore, this also compli-
cates the garbage-collector implemen-
tation, since it has to support a never-
fail allocation mode and must tailor its
heuristics to take into account these
non-garbage-collecting time periods.

Sin Two: Explicit garbage-collection
invocation. JavaScript does not have a
Java-style System.gc() API, but some de-
velopers would like to have that. Their
motivation is proactively to invoke
garbage collection during a non-time-
critical phase in order to avoid it later
when timing is critical. The applica-
tion, however, has no idea how long
such a garbage collection will take and
therefore may by itself introduce jank.
Moreover, garbage-collection heuris-
tics may get confused if developers in-
voke the garbage collector at arbitrary
points in time.

Given the potential for develop-
ers to trigger unexpected side effects
with these approaches, they should
not interfere with garbage collection.
Instead, the runtime system should
endeavor to avoid the need for such

tricks by providing high-performance
application throughput and low-laten-
cy pauses during mainline application
execution, while scheduling longer-
running work during periods of idle-
ness such that it does not impact appli-
cation performance.

Idle-Task Scheduling
To schedule long-running garbage col-
lection tasks while Chrome is idle, V8
uses Chrome’s task scheduler. This
scheduler dynamically reprioritizes
tasks based on signals it receives from a
variety of other components of Chrome
and various heuristics aimed at esti-
mating user intent. For example, if the
user touches the screen, the scheduler
will prioritize screen rendering and
input tasks for a period of 100ms to
ensure the user interface remains re-
sponsive while the user interacts with
the Web page.

The scheduler’s combined knowl-
edge of task queue occupancy, as well
as signals it receives from other compo-
nents of Chrome, enables it to estimate
when Chrome is idle and how long it is
likely to remain so. This knowledge is
used to schedule low-priority tasks,
hereafter called idle tasks, which are
run only when there is nothing more
important to do.

To ensure these idle tasks don’t
cause jank, they are eligible to run
only in the time periods between the
current frame having been drawn
to screen and the time when the
next frame is expected to start being
drawn. For example, during active
animations or scrolling (see Figure
1), the scheduler uses signals from
Chrome’s compositor subsystem to
estimate when work has been com-
pleted for the current frame and what
the estimated start time for the next
frame is, based on the expected inter-
frame interval (for example, if render-
ing at 60FPS, the interframe interval
is 16.6ms). If no active updates are be-
ing made to the screen, the scheduler
will initiate a longer idle period, which
lasts until the time of the next pend-
ing delayed task, with a cap of 50ms to
ensure Chrome remains responsive to
unexpected user input.

To ensure idle tasks do not overrun
an idle period, the scheduler passes a
deadline to the idle task when it starts,
specifying the end of the current idle

Figure 1. Idle period example.

time

vsync vsync vsync

input draw idle
GC

other
idle

input draw idle
GC

idle
period

idle
period

Figure 2. Effect of memory reducer on heap size.

time

h
ea

p

size

limit

limit ′

baseline
memory reducer

t1 t2 t3

OCTOBER 2016 | VOL. 59 | NO. 10 | COMMUNICATIONS OF THE ACM 37

practice

period. Idle tasks are expected to finish
before this deadline, either by adapt-
ing the amount of work they do to fit
within this deadline or, if they cannot
complete any useful work within the
deadline, by reposting themselves to
be executed during a future idle pe-
riod. As long as idle tasks finish before
the deadline, they do not cause jank in
Web page rendering.

Idle-Time Garbage-Collection
Scheduling in V8
Chrome’s task scheduler allows V8 to
reduce both jank and memory usage by
scheduling garbage-collection work as
idle tasks. To do so, however, the gar-
bage collector needs to estimate both
when to trigger idle-time garbage-col-
lection tasks and how long those tasks
are expected to take. This allows the
garbage collector to make the best use
of the available idle time without going
past an idle-tasks deadline. This sec-
tion describes implementation details
of idle-time scheduling for minor and
major garbage collections.

Minor garbage-collection idle-time
scheduling. Minor garbage collection
cannot be divided into smaller work
chunks and must be performed ei-
ther completely or not at all. Perform-
ing minor garbage collections during
idle time can reduce jank; however,
being too proactive in scheduling a
minor garbage collection can result
in promotion of objects that could
otherwise die in a subsequent non-
idle minor garbage collection. This
could increase the old-generation size
and the latency of future major gar-
bage collections. Thus, the heuristic
for scheduling minor garbage collec-
tions during idle time should balance
between starting a garbage collection
early enough that the young-gener-
ation size is small enough to be col-
lectable during regular idle time, and
deferring it long enough to avoid false
promotion of objects.

Whenever Chrome’s task scheduler
schedules a minor garbage-collection
task during idle time, V8 estimates if
the time to perform the minor garbage
collection will fit within the idle-task
deadline. The time estimate is com-
puted using the average garbage-col-
lection speed and the current size of
the young generation. It also estimates
the young-generation growth rate and

performs an idle-time minor garbage
collection only if the estimate is that
at the next idle period the size of the
young generation is expected to exceed
the size that could be collected within
an average idle period.

Major garbage-collection idle-time
scheduling. A major garbage collection
consists of three parts: initiation of in-
cremental marking, several incremen-
tal marking steps, and finalization.
Incremental marking starts when the
size of the heap reaches a certain limit,
configured by a heap-growing strategy.
This limit is set at the end of the previ-
ous major garbage collection, based on
the heap-growing factor f and the total
size of live objects in the old genera-
tion: limit = f ∙ size.

As soon as an incremental major
garbage collection is started, V8 posts
an idle task to Chrome’s task sched-
uler, which will perform incremental
marking steps. These steps can be
linearly scaled by the number of bytes
that should be marked. Based on the
average measured marking speed, the
idle task tries to fit as much marking
work as possible into the given idle
time. The idle task keeps reposting
itself until all live objects are marked.
V8 then posts an idle task for final-
izing the major garbage collection.
Since finalization is an atomic opera-
tion, it is performed only if it is esti-
mated to fit within the allotted idle
time of the task; otherwise, V8 reposts
that task to be run at a future idle time
with a longer deadline.

Memory reducer. Scheduling a ma-
jor garbage collection based on the
allocation limit works well when the
Web page shows a steady allocation
rate. If the Web page becomes inactive
and stops allocating just before hitting
the allocation limit, however, there will
be no major garbage collection for the
whole period while the page is inactive.
Interestingly, this is an execution pat-
tern that can be observed in the wild.
Many Web pages exhibit a high alloca-
tion rate during page load as they ini-
tialize their internal data structures.
Shortly after loading (a few seconds or
minutes), the Web page often becomes
inactive, resulting in a decreased al-
location rate and decreased execution
of JavaScript code. Thus, the Web page
will retain more memory than it actu-
ally needs while it is inactive.

Chrome’s task
scheduler allows
V8 to reduce
both jank and
memory usage
by scheduling
garbage-collection
work as idle tasks.

38 COMMUNICATIONS OF THE ACM | OCTOBER 2016 | VOL. 59 | NO. 10

practice

A controller, called memory reducer,
tries to detect when the Web page be-
comes inactive and proactively sched-
ules a major garbage collection even
if the allocation limit is not reached.
Figure 2 shows an example of major
garbage-collection scheduling.

The first garbage collection happens
at time t1 because the allocation limit
is reached. V8 sets the next allocation
limit based on the heap size. The sub-
sequent garbage collections at times
t2 and t3 are triggered by the memory
reducer before limit is reached. The
dotted line shows what the heap size
would be without the memory reducer.

Since this can increase latency,
Google developed heuristics that rely
not only on the idle time provided by
Chrome’s task scheduler, but also on
whether the Web page is now inactive.
The memory reducer uses the JavaScript

invocation and allocation rates as sig-
nals for whether the Web page is active
or not. When the rate drops below a pre-
defined threshold, the Web page is con-
sidered to be inactive and major garbage
collection is performed in idle time.

Silky Smooth Performance
Our aim with this work was to im-
prove the quality of user experience
for animation-based applications by
reducing jank caused by garbage col-
lection. The quality of the user expe-
rience for animation-based applica-
tions depends not only on the average
frame rate, but also on its regularity.
A variety of metrics have been pro-
posed in the past to quantify the phe-
nomenon of jank—for example, mea-
suring how often the frame rate has
changed, calculating the variance of
the frame durations, or simply using

the largest frame duration. Although
these metrics provide useful informa-
tion, they all fail to measure certain
types of irregularities. Metrics that
are based on the distribution of frame
durations, such as variance or largest
frame duration, cannot take the tem-
poral order of frames into account.
For example, they cannot distinguish
between the case where two dropped
frames are close together and the case
where they are further apart. The for-
mer case is arguably worse.

We propose a new metric to over-
come these limitations. It is based on
the discrepancy of the sequence of
frame durations. Discrepancy is tradi-
tionally used to measure the quality of
samples for Monte Carlo integration.
It quantifies how much a sequence of
numbers deviates from a uniformly dis-
tributed sequence. Intuitively, it mea-
sures the duration of the worst jank.
If only a single frame is dropped, the
discrepancy metric is equal to the size
of the gap between the drawn frames.
If multiple frames are dropped in a
row—with some good frames in be-
tween—the discrepancy will report the
duration of the entire region of bad per-
formance, adjusted by the good frames.

Discrepancy is a great metric for
quantifying the worst-case perfor-
mance of animated content. Given
the timestamps when frames were
drawn, the discrepancy can be com-
puted in O(N) time using a variant of
Kadane’s algorithm for the maximum
subarray problem.

The online Web Graphics Library
(WebGL) benchmark OortOnline
(http://oortonline.gl/#run) demon-
strates jank improvements of idle-time
garbage-collection scheduling. Figure
3 shows these improvements: frame-
time discrepancy, frame time, number
of frames missed because of garbage
collection, and total garbage-collec-
tion time compared with the baseline
on the oortonline.gl benchmark.

Frame-time discrepancy is reduced
on average from 212ms to 138ms. The
average frame-time improvement is
from 17.92ms to 17.6ms. We observed
that 85% of garbage-collection work was
scheduled during idle time, which sig-
nificantly reduced the amount of gar-
bage-collection work performed during
time-critical phases. Idle-time garbage-
collection scheduling increased the

Figure 3. Improvements to the OortOnline.gl benchmark.

co
m

p
ar

is
on

 t
o

b
as

el
in

e
(l

ow
er

 is
 b

et
te

r)

1

0

0.2

0.4

0.6

0.8

1.2

1.4

frame time
discrepancy

frame
time

missed
frames due

to GC

total
GC time

Figure 4. Memory usage comparison.

time (seconds)

m
em

or
y

u
sa

g
e

(M
B

)
(l

ow
er

 is
 b

et
te

r)

100

120

80

60

40

20

0
0 20 40 60 80 100

baseline
memory reducer

OCTOBER 2016 | VOL. 59 | NO. 10 | COMMUNICATIONS OF THE ACM 39

practice

the next minor or major collection will
occur as a result of application allocation
throughput. That information allows ef-
ficient scheduling of garbage-collection
operations during idle times to reduce
jank while providing high throughput.

Concurrent, Parallel,
Incremental Garbage Collection
An orthogonal approach to avoid
garbage-collection pauses while ex-
ecuting an application is achieved by
making garbage-collection operations
concurrent, parallel, or incremen-
tal. Making the marking phase or the
compaction phase concurrent or in-
cremental typically requires read or
write barriers to ensure a consistent
heap state. Application throughput
may degrade because of expensive
barrier overhead and code complexity
of the virtual machine.

Idle-time garbage-collection sched-
uling can be combined with concur-
rent, parallel, and incremental gar-
bage-collection implementations. For
example, V8 implements incremental
marking and concurrent sweeping,
which may also be performed during
idle time to ensure fast progress. Most
importantly, costly memory-compac-
tion phases such as young-generation
evacuation or old-generation compac-
tion can be efficiently hidden during
idle times without introducing costly
read or write barrier overheads.

For a best-effort system, where
hard realtime deadlines do not have
to be met, idle-time garbage-collection
scheduling may be a simple approach
to provide both high throughput and
low jank.

Beyond Garbage Collection
and Conclusion
Idle-time garbage-collection schedul-
ing focuses on the user’s expectation
that a system that renders at 60 frames
per second appears silky smooth. As
such, our definition of idleness is tight-
ly coupled to on-screen rendering sig-
nals. Other applications can also ben-
efit from idle-time garbage-collection
scheduling when an appropriate defini-
tion of idle time is applied. For example,
a node.js-based server that is built on V8
could forward idle-time periods to the
V8 garbage collector while it waits for a
network connection.

The use of idle time is not limited

total garbage-collection time by 13% to
780ms. This is because scheduling gar-
bage collection proactively and making
faster incremental marking progress
with idle tasks resulted in more gar-
bage collections.

Idle-time garbage collection also
improves regular Web browsing. While
scrolling popular Web pages such as
Facebook and Twitter, we observed that
about 70% of the total garbage-collec-
tion work is performed during idle time.

The memory reducer kicks in when
Web pages become inactive. Figure 4
shows an example run of Chrome with
and without the memory reducer on
the Google Web Search page. In the
first few seconds both versions use the
same amount of memory as the Web
page loads and allocation rate is high.
After a while the Web page becomes
inactive since the page has loaded and
there is no user interaction. Once the
memory reducer detects that the page
is inactive, it starts a major garbage
collection. At that point the graphs for
the baseline and the memory reducer
diverge. After the Web page becomes
inactive, the memory usage of Chrome
with the memory reducer decreases to
34% of the baseline.

A detailed description of how to run
the experiments presented here to re-
produce these results can be found in
the 2016 Programming Language De-
sign and Implementation (PLDI) arti-
fact evaluation document.2

Other Idle-Time
Garbage-Collected Systems
A comprehensive overview of garbage col-
lectors taking advantage of idle times is
available in a previous article.4 The authors
classify different approaches in three cat-
egories: slack-based systems where the
garbage collector is run when no other
task in the system is active; periodic sys-
tems where the garbage collector is run at
predefined time intervals for a given dura-
tion; and hybrid systems taking advantage
of both ideas. The authors found that, on
average, hybrid systems provide the best
performance, but some applications favor
a slack-based or periodic system.

Our approach of idle-time garbage-
collection scheduling is different. Its
main contribution is that it profiles the
application and garbage-collection com-
ponents to predict how long garbage-
collection operations will take and when

to garbage collection. It has been ex-
posed to the Web platform in the form
of the requestIdleCallback API,5 en-
abling Web pages to schedule their
own callbacks to be run during idle
time. As future work, other manage-
ment tasks of the JavaScript engine
could be executed during idle time
(for example, compiling code with the
optimizing just-in-time compiler that
would otherwise be performed during
JavaScript execution).

 Related articles
 on queue.acm.org

Real-time Garbage Collection
David F. Bacon
http://queue.acm.org/detail.cfm?id=1217268

A Conversation with David Anderson
http://queue.acm.org/detail.cfm?id=1080872

Network Virtualization: Breaking the
Performance Barrier
Scott Rixner
http://queue.acm.org/detail.cfm?id=1348592

References
1. Degenbaev, U., Eisinger, J., Ernst, M., McIlroy, R., Payer, H.

Idle time garbage collection scheduling. In Proceedings
of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, (2016).

2. Degenbaev, U., Eisinger, J., Ernst, M., McIlroy,
R., Payer, H. PLDI’16 Artifact: Idle time garbage
collection scheduling (Santa Barbara, CA, June 13-17,
2016) 570–583. ACM, 978-1-4503-4261-2/16/06;
https://goo.gl/AxvigS.

3. Google Inc. The RAIL performance model; http://
developers.google.com/Web/tools/chrome-devtools/
profile/evaluate-performance/rail.

4. Kalibera, T., Pizlo, F., Hosking, A. L., Vitek, J.
Scheduling real-time garbage collection on
uniprocessors. ACM Trans. Computer Systems 29, 3
(2011), 8:1–8:29.

5. McIlroy. R. Cooperative scheduling of background
tasks. W3C editor’s draft, (2016); https://w3c.github.
io/requestidlecallback/.

6. Ungar, D. 1984. Generation scavenging: a nondisruptive
high-performance storage reclamation algorithm.
In Proceedings of the 1st ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical
Software Development Environments (SDE 1).

Ulan Degenbaev is a software engineer at Google, working
on the garbage collector of the V8 JavaScript engine.

Jochen Eisinger is a software engineer at Google,
working on the V8 JavaScript engine and Chrome security.
Prior to that, he worked on various other parts of Chrome.

Manfred Ernst is a software engineer at Google, where he
works on virtual reality. Prior to that, he integrated a GPU
rasterization engine into the Chrome Web browser. Ernst
was also research scientist at Intel Labs and a cofounder
and the CEO of Bytes+Lights.

Ross McIlroy is a software engineer at Google and tech
lead of V8’s interpreter effort. He previously worked on
Chrome’s scheduling subsystem and mobile optimization
efforts. Previously, McIlroy worked on various operating-
system and virtual-machine research projects, including
Singularity, Helios, Barrelfish, and HeraJVM.

Hannes Payer is a software engineer at Google, tech
lead of the V8 JavaScript garbage collection effort,
and a virtual-machine enthusiast. Prior to V8, Payer
worked on Google’s Dart virtual machine and various
Java virtual machines.

Copyright held by owner/authors.

